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Abstract 

This study first compares two different passive microwave snow water equivalent (SWE) 

retrievals, namely the retrieval from the Suomi National Polar-orbiting Partnership (S-NPP) 

Advanced Technology Microwave Sounder (ATMS) and that from the Global Change Observation 

Mission – Water (GCOM-W1) Advanced Microwave Scanning Radiometer 2 (AMSR2); it further 

creates an optimal blending mechanism that merges the two retrievals with in situ observations 

from the Snow Telemetry (SNOTEL) and Cooperative Observer Program (COOP) networks. The 

assessments of the two products are done over conterminous United States (CONUS) for the snow 

seasons (November–June) of the water years 2017–2019 using in situ data and the SNOw Data 

Assimilation System (SNODAS) SWE analysis. Both satellite products tend to underestimate 

SWE. Between the two, AMSR2 retrieval outperforms in terms of correlation with observations 

and depth of saturation, but it exhibits a distinctive, seasonally varying bias that is not seen in 

ATMS retrieval. The negative bias over the early snow season, as further analysis indicates, most 

likely stems from AMSR2 retrieval’s use of a high frequency channel (i.e., 89 GHz) for shallow 

snow detection, while the impact of differing assumptions of snow density is marginal. The 

blending scheme, developed on the basis of the validation experiment, features a histogram-based 

bias correction as a supplement to optimal interpolation. Cross-validation suggests that 

interpolated station product without the satellite background broadly underperforms the blended 

in situ-satellite product, confirming the utility of the satellite retrievals. Furthermore, the a priori 

bias correction mechanism is shown to be effective in mitigating large fluctuations in bias. Finally, 
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the bias-corrected, blended in situ-satellite product performs comparably or even favorably against 

SNODAS over many parts of the CONUS, with important implications for joint use of satellite 

and in situ observations for hydrological monitoring and forecasting. 

Keywords: ATMS, AMSR2, passive microwave, snow water equivalent, bias correction, optimal 

interpolation, weighted averaging. 
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1. Introduction 

Snowpack plays an important role in modulating global climate and hydrologic cycle (Dong, 

2018; Lettenmaier et al., 2015; Sturm, 2015). Accurate estimates of snowpack properties are of 

critical importance to a variety of hydrologic and climate-related applications (Chang et al., 2005; 

Dozier et al., 2016). Many gridded products have been created to provide long-term snow depth 

(SD) or snow water equivalent (SWE) estimates. Such products include land surface reanalysis 

(Dee et al., 2011; Gelaro et al., 2017; Rodell et al., 2004; Xia et al., 2012), snow model simulations 

(Brun et al., 2013), regional climate model simulations (Wrzesien et al., 2018), and ground-based 

interpolation data (Brown and Brasnett, 2010; Broxton et al., 2016a). Among these, the model 

simulations and reanalysis are subject to large uncertainties stemming from those in model 

structures, parameters, as well as forcing data (Mortimer et al., 2020; Mudryk et al., 2015). 

Meanwhile, the interpolation data are constrained by the density and locations of stations. 

In recent decades, satellite retrievals are seeing increasing applications in snowpack 

monitoring and prediction, especially in regions with poor ground measurements (Frei et al., 2012; 

Nolin, 2010). In particular, passive microwave (PMW) SD/SWE retrievals have the advantage of 

being directly relevant to water balance calculation, available for both day and night-time 

conditions, and not subject to interference by clouds or atmospheric gases as are snow cover 

retrieved by optical sensors (Clifford, 2010; Lee et al., 2015). Currently, operational spaceborne 

PMW sensors that can retrieve SD/SWE include the Defense Meteorological Satellite Program 

(DMSP) Special Sensor Microwave Imager/Sounder (SSMIS; Bommarito, 1993; Kunkee et al., 
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2008), the Global Change Observation Mission (GCOM) Advanced Microwave Scanning 

Radiometer (AMSR) series (Imaoka et al., 2002, 2010), and the Joint Polar Satellite System (JPSS) 

Advanced Technology Microwave Sounder (ATMS; Weng et al., 2012). Typically, the radiance 

observations from the PMW sensors are used to retrieve SD by exploiting empirical brightness 

temperature (Tb) – SD relationships (Kelly, 2009), and SD is then converted to SWE through 

empirical estimates of snow density (Sturm et al., 2010). The ATMS SWE retrieval algorithm is 

somewhat unique that it assimilates radiance observations from sounding channels into the 

Community Radiative Transfer Model (CRTM; Han et al., 2006) using the Microwave Integrated 

Retrieval System (MiRS; Boukabara et al., 2011). SWE is then retrieved by comparing the MiRS 

retrieved emissivity spectra with those from a precomputed catalog that relates surface emissivity 

to SWE to find the closest match. The catalog is generated from a dense medium radiative transfer 

snow emissivity model (Weng et al., 2001). 

In spite of the many promising aspects of PWM SD/SWE retrievals, these products are limited 

in spatial resolution and are known to suffer from large errors (Dawson et al., 2018; De Lannoy et 

al., 2010; Frei et al., 2012). The errors may stem from sensor signal saturation, vegetation and 

terrain interference, snow wetness, and simplifying assumptions underpinning the retrieval 

algorithms (Dong et al., 2005; Liu et al., 2015). For example, Vuyovich et al. (2014) suggested 

that forest cover and deep snow have significant impact on AMSR – Earth Observing System 

(AMSR-E; Imaoka et al., 2002) and Special Sensor Microwave Imager (SSM/I; Hollinger, 1989) 

SWE estimates. Dai et al. (2017) showed that the mountainous topography and the coarse 
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resolution of PMW sensor underlie the large disagreement between AMSR-E SD and in situ 

observations. Cho et al. (2020) illustrated that slope and surface heterogeneity impact the SWE 

difference between the SSMI/S (i.e., SSM/I and SSMIS) and gamma SWE. Tuttle et al. (2018) 

found that up to half of the error in AMSR-E SWE is potentially due to subpixel scale variability. 

While these studies advance our understanding of the error sources of PMW data, most of them 

fall short in proposing or establishing effective mechanisms for mitigating the errors. Furthermore, 

considering the number of sensors and retrieval products that are currently available, there is a 

clear, and heretofore unfulfilled demand for identifying and leveraging the complementary 

strengths of different PMW retrievals and in situ products, and thereby facilitating the application 

adoption of the retrievals.  

One way to address the shortcomings of stand-alone PMW SD/SWE data is through the joint 

use of PMW radiometry and ground observations as information sources in the retrieval algorithms 

(Pulliainen, 2006). For example, the Global Snow Monitoring for Climate Research (GlobSnow) 

SWE product (Pulliainen et al., 2020; Takala et al., 2011) assimilates different sources of PMW 

Tb (from 18.7 and 36.5 GHz channels) and in situ SD into a semi-empirical snow emission model 

and provides 25-km daily SWE estimates from 1979 to 2018 over the Northern Hemisphere 

excluding alpine areas. This product, however, still exhibits large errors inherited from structural 

limitations of the Tb–SD relation and the snow emission models (Hancock et al., 2013; Larue et 

al., 2017; Mudryk et al., 2015). An alternative way is through the assimilation of the PMW 

observations into snow models (Dong et al., 2007; Dziubanski and Franz, 2016) or land surface 

6 



    

 

  

 

 

   

  

  

  

  

   

   

 

  

    

 

 

 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

models (Che et al., 2014; De Lannoy et al., 2012; Kwon et al., 2017; Liu et al., 2013). For example, 

Kumar et al. (2019) assimilated different sources of PMW SD into the Noah model (Ek et al., 2003) 

to improve SD estimates from 1979 to 2015 for the conterminous United States (CONUS). While 

these model-based products were demonstrated to be generally superior to stand-alone PMW SWE 

(Cho et al., 2020; Dawson et al., 2018; Mortimer et al., 2020), their creation entails high 

computational costs and their accuracy remains subject to questions in data scarce areas (Broxton 

et al., 2016b; Clark et al., 2011; Rutter et al., 2009). 

The objectives of this study are twofold. The first is to assess the complementary skills of the 

two different PMW SWE retrievals, namely that from GCOM AMSR2 and the one based on JPSS 

ATMS, over the CONUS. The second is to develop a lightweight, computationally efficient 

blending algorithm that optimally combining the two satellite products and in situ observations. 

The blending scheme has the advantage of being simple and independent of any snow model, and 

its product can be assimilated to the latter to further improve the prediction of snow and other 

hydrologic variables (Kumar et al., 2015; Liu et al., 2015). We choose to focus on SWE rather 

than SD, as the former can be directly used in hydrologic analysis and predictions. The AMSR2 

and ATMS SWE retrievals are selected for the following reasons. First, these products are based 

on two relatively new instruments that contrast sharply in scanning and channel configurations. 

AMSR2, like its predecessor AMSR-E, is a conical scanner measuring orthogonally polarized 

radiation (vertical and horizontal) at specific window frequencies (Imaoka et al., 2010), whereas 

ATMS is a cross-track scanner measuring radiation at all its channels at varying scan angles (Weng 
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et al., 2012). The second reason is that the retrieval algorithms for the two products are quite 

different. While the AMSR2 retrieval algorithm has undergone extensive assessments (Lee et al., 

2015; Wang et al., 2019; Zhang et al., 2017), neither the ATMS SWE retrieval nor the associated 

algorithm in MiRS has received much attention. This study is intended to fill the latter knowledge 

gap by gauging the relative strengths of ATMS retrieval against the more established AMSR2 

counterpart.  

The primary research questions of this study are as follows. First, how do the AMSR2 and 

ATMS SWE retrievals differ in their accuracy among different geographic regions, and what are 

the complementary strengths (if any) of the two products? Second, how the differences in skill can 

be attributed to differences in scanning patterns of each instrument and in the retrieval algorithms? 

Third, can the introduction of a priori bias correction improve upon the optimal interpolation-based 

blending scheme, which is typically employed in the field of snow analysis (Brasnett, 1999; Brown 

et al., 2003; Liu et al., 2015)? 

The rest of this paper is structured as follows. Section 2 describes the study area, the two 

PWM SW retrievals, and the in situ observations for analysis and validation. Sections 3 offers an 

overview of the blending algorithm, and Section 4 presents and interprets key observations 

emerging from the evaluation. Section 5 summarizes the major findings and concludes the study. 

2. Study area and data 

Figure 1 shows the elevation and spatial distribution of Snow Telemetry (SNOTEL) and 

Cooperative Observer Program (COOP) stations in the 18 hydrologic units (HUs) over the CONUS. 
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143 The research domain extends from 25° to 53° north and 125° to 67° west with a 0.125° grid spacing, 

144 which is same as the North American Land Data Assimilation System (NLDAS; Mitchell et al., 

145 2004). The elevation data were aggregated from the 30 arc second Global Multi-resolution Terrain 

146 Elevation Data (GMTED2010; Danielson and Gesch, 2011). We acquired daily in situ observations 

147 and satellite retrievals over the CONUS for the main snow seasons of the water years 2017–2019 

148 (i.e., 11/01/2016–06/30/2017, 11/01/2017–06/30/2018, and 11/01/2018–06/30/2019). 

149 

150 Figure 1. Elevation and spatial distribution of SNOTEL and COOP stations in the 18 hydrologic 
151 units over the CONUS.  

152 2.1. SNOTEL SWE observations 

153 SNOTEL is an automated network of stations that records snow and meteorological variables 

154 in the western US (Serreze et al., 1999). It provides reliable and quality-controlled data for over 

155 800 high-elevation mountain stations in 12 states. At each station, a snow pillow measures how 

156 much water is in the snowpack by weighing the snow with a pressure transducer and the weight of 
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snow is then converted into the SWE. We downloaded daily SWE data for 789 stations excluding 

those in Alaska from the Natural Resources Conservation Service (NRCS) 

(https://www.wcc.nrcs.usda.gov/snow). 

2.2. COOP SWE observations 

Because of the limited spatial coverage of SNOTEL SWE observations, additional 

observations of SD were collected from the National Weather Service (NWS) COOP network, 

which consists of more than 8000 active stations across the US. We acquired COOP SD data for 

5073 stations from Iowa State University (https://mesonet.agron.iastate.edu/COOP). They were 

then converted to SWE using the snow bulk density method (Sturm et al., 2010) considering the 

effects of SD, snow aging, and snow cover classes as  

𝜌 ,  
 𝜌  𝜌 1 𝑒  𝜌  (1) 

where 𝜌  is the maximum bulk density, 𝜌  is the initial density, and 𝑘  and 𝑘  are densification 

parameters for snow depth ℎ  and day of the year (DOY). DOY runs from −92 (1 October) to +181 

(30 June) with no 0 value in the Northern Hemisphere. The parameter values of 𝜌 , 𝜌 , 𝑘 , and 

𝑘  for five snow cover classes as alpine, maritime, prairie, tundra, and taiga can be found in Table 

4 of Sturm et al. (2010). The 0.5° × 0.5° global snow cover classes climatology map were acquired 

from the Arctic Data Center (https://arcticdata.io/catalog/view/doi:10.5065/D69G5JX5) and 

remapped to the research domain using nearest neighbor interpolation. This dataset divides the 

world’s seasonal snowpack into six classes as tundra, taiga, maritime, ephemeral, prairie, and 

alpine snow, based on physical properties such as depth, density, thermal conductivity, number of 
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layers, and degree of wetting (Sturm et al., 1995). We set the ephemeral snow to the prairie snow 

since there are no parameter values for this class of snow in Sturm et al. (2010). 

2.3. ATMS SWE retrieval 

ATMS was launched in October 2011 onboard the National Oceanic and Atmospheric 

Administration (NOAA) Suomi National Polar-orbiting Partnership (S-NPP) satellite. It is the next 

generation cross-track microwave sounder with 22 channels that spans the frequency range from 

23.8 to 183 GHz. ATMS observes from 824 km above the Earth with the scan angular span of 

±52.77° relative to nadir and obtains data over an approximately 2600 km swath. It provides two 

observations daily for a given location from a sun-synchronous orbit. Note that the resolution of 

the ATMS observations declines at larger scan angles due to the expanded field of view. A detailed 

description of the instrument characteristics of ATMS can be found in Weng et al. (2012). 

The ATMS SWE product is retrieved using NOAA’s MiRS, an operational microwave 

retrieval platform based on the one-dimensional variational (1DVAR) inversion algorithm 

(Boukabara et al., 2011). A detailed description of the MiRS is given by Liu et al. (2016). A 

flowchart of the ATMS SWE retrieval algorithm is presented in Figure 2. There are five primary 

steps to the retrieval algorithm:  

Step 1. The raw sensor radiance observations are footprint matched using a footprint 

averaging/resampling algorithm to ensure that all channels for the retrieval view the same 

location on the Earth (Kongoli et al., 2011). 
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Step 2. The radiance observations are bias corrected to reduce the influences of cloud, precipitation 

and coastal contamination, by adjusting the histogram of the Tb difference between 

simulated and actual measurements to make it centered about zero (Liu et al., 2016). 

Step 3. A first guess for the 1DVAR retrieval is generated, which comes either from a dynamic 

climatology varying with location, time of year, and time of day (temperature profile, 

water vapor profile, and skin temperature), or a combination of fixed climatology and 

regression (emissivity and hydrometeors). 

Step 4. The 1DVAR is employed to assimilate the preprocessed radiance observations at multiple 

ATMS channels using the CRTM (Han et al., 2006) as the forward model to retrieve 

surface emissivity, along with all other key atmospheric and surface parameters 

simultaneously.  

Step 5. A post-processing step is performed to compare the retrieved emissivity spectra with those 

from a precomputed catalog that relates surface emissivity to snowpack properties to find 

the closest match. The primary channels used in the catalog search are ATMS channels 1, 

2, 3, and 16 (i.e., 23.8, 31.4, 50.3, and 88.2 GHz, respectively). The catalog is generated 

offline from a dense medium radiative transfer snow emissivity model which accounts for 

the dielectric properties of ice grains and assumes a constant snow density of 0.25 g/cm3 

(Weng et al., 2001). The catalog search of SWE subjects to additional constraints based 

on a temporally and spatially varying SWE climatology. A correction based on forest 

fraction is also applied to the emissivity spectrum prior to the catalog search. 

12 



   

 

 

 

  

 

 

216 We acquired ATMS level 2 SWE data from NOAA’s Comprehensive Large Array-data 

217 Stewardship System (CLASS) (https://www.bou.class.noaa.gov). Level 2 data at the raw satellite 

218 observation field of views were binned into gridded fields of daily SWE on a resolution of 0.125° 

219 latitude/longitude as in our research domain.  

220 

221 Figure 2. Flowchart of the ATMS SWE retrieval algorithm. 

222 2.4. AMSR2 SWE retrieval 

223 AMSR2 was launched in May 2012 onboard the Japanese Aerospace Exploration Agency 

224 (JAXA) GCOM – Water (GCOM-W1) satellite. It is a sensor to observe microwave radiation 
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emitted naturally from the Earth surface and the atmosphere, using six different frequency bands 

ranging from 6.9 to 89 GHz. AMSR2 observes from about 700 km above the Earth with a nominal 

incidence angle of 55° and obtains data over a 1450 km swath. This conical scan mechanism 

enables AMSR2 to acquire a set of daytime and nighttime data at a nearly constant spatial 

resolution over more than 99% coverage of the Earth every two days. A detailed description of the 

instrument characteristics of AMSR2 can be found in Imaoka et al. (2010). 

The retrieval algorithm of AMSR2 follows that of AMSR-E with higher spatial resolution. 

The SD algorithm separates out a retrieval for two classes as forest and non-forest and weights the 

summed estimate base on the fractional content of both classes in a grid cell (Kelly, 2009). The 

equation to calculate the SD is give as 

𝑆𝐷  𝑓𝑓  𝑆𝐷   1 𝑓𝑓  𝑆𝐷  (2) 

where 𝑆𝐷  is the SD for forested component, 𝑆𝐷  is the SD for non-forested component, and 𝑓𝑓 

is the forest fraction ranging from 0 to 0.75. For the forested component, the Tb difference between 

the 18.7 and 36.5 GHz channels forms the basis; while for the non-forested component, the Tb 

difference between the 10.7 and 36.5 GHz channels retrieves moderate snow and that between the 

10.7 and 18.7 GHz channels retrieves deep snow. The equations to calculate the 𝑆𝐷  and 𝑆𝐷  are 

given as 

. .𝑆𝐷  𝑝  (3)
.  

𝑆𝐷  𝑝 𝑇𝑏 .  𝑇𝑏 .  𝑝 𝑇𝑏 .  𝑇𝑏 .  (4) 

where  
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𝑝   (5)
. .  

𝑝   (6)
. .  

and 𝑓𝑑 is the forest density ranging from 0 to 1. Accordingly, subscript alphabets 𝑉 and 𝐻 denote 

vertical and horizontal polarization, respectively, and subscript numbers stand for corresponding 

frequencies. A nominal SD of 5 cm is assigned to shallow snow since it is challenging to get robust 

estimation of SD (Kelly, 2009). The shallow snow is detected by the following threshold 

𝑇𝑏  𝑇𝑏 .  & 𝑇𝑏  𝑇𝑏 .
𝑇𝑏   255 𝐾 & 𝑇𝑏   255 𝐾  (7)

𝑇   267 𝐾 

where 𝑇  is the snowpack surface temperature. 

We acquired AMSR2 level-2 global SD data at the raw satellite observation field of views 

from the JAXA Global Portal System (G-Portal; https://gportal.jaxa.jp/gpr) and binned them into 

gridded fields of daily SD on a resolution of 0.125° latitude/longitude as in our research domain. 

The AMSR2 SD was then converted to SWE using the same snow bulk density method (Sturm et 

al., 2010) as in COOP SWE conversion. 

2.5. IMS snow cover analysis 

The Interactive Multisensor Snow and Ice Mapping System (IMS; Helfrich et al., 2007; 

Ramsay, 1998), provides snow and ice cover maps for the Northern Hemisphere from February 

1997 to the present at 1 km, 4 km, and 14 km resolutions. This dataset is derived from a variety of 

data products including satellite imagery and in situ data. We downloaded the IMS daily 4 km 

resolution Northern Hemisphere snow and ice analysis dataset from the National Snow & Ice Data 
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Center (https://nsidc.org/data/g02156). We then remapped this dataset to our research domain 

using majority resampling. IMS was used to mask the PMW SWE, since it is more reliable for 

snow cover estimation (Brown et al., 2007; Chen et al., 2012). 

2.6. SNODAS SWE analysis 

The SNOw Data Assimilation System (SNODAS) is a modeling and data assimilation system 

developed by the National Operational Hydrologic Remote Sensing Center (NOHRSC) to provide 

daily estimates of SWE and other snow properties over the CONUS at a resolution of 1 km from 

1 October 2003 to the present (https://nsidc.org/data/G02158). It integrates snow data from satellite, 

airborne platforms, and ground stations (including SNOTEL and COOP) with model estimates of 

snow cover and other snowpack properties (Carroll et al., 2001). On a regular basis, operators use 

the SNODAS platform to compute the differences between station observations and collocated 

model estimates. These differences undergo spatial interpolation and the interpolated fields are 

used to correct the model estimates. SNODAS is a widely used operational product and often serve 

as the reference for assessing other blended or model-simulated snowpack quantities (Tedesco and 

Narvekar, 2010). It is, however, worth noting that SNODAS product can be subject to errors in 

model physics as well as those in short-term forecasts and analysis that serve as forcing to the 

model (Lv et al., 2019). In this study, we remapped SNODAS dataset to our research domain by 

averaging the 1-km resolution values within each of the 0.125° grid cell. It was then used as a 

benchmark in examining the spatial distribution of ATMS, AMSR2 and blended SWE products. 
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283 3. Blending algorithm framework 

284 The algorithm framework for blending satellite retrievals with in situ observations is shown 

285 in Figure 3. The first step is to mask the PMW SWE with the IMS snow cover maps. Namely, the 

286 PMW SWE retrievals are retained only over snow covered grids in order to remove possible false 

287 alarms; in addition, any grids that are seen to be snow covered in IMS but not detected by the 

288 PMW retrievals are filled with 5 mm of SWE. The outcome from the masking then undergoes the 

289 following processing steps: i) bias correction, ii) optimal interpolation, and iii) weighted averaging. 

290 We designed nine comparative experiments (Table 1) to investigate the effect of each step on the 

291 accuracy of the resulting product. Exp1 and Exp2 are experiments for the raw ATMS and AMSR2 

292 SWE products, respectively, and Exp3 to Exp9 are different blending experiments. In each 

293 blending experiment, one, or a combination of processing steps is applied to zero to two satellite 

294 

295 

retrieval(s) in conjunction with the in situ observations. 

Table 1. Design of comparative experiments. 

No. Background Bias correction Optimal interpolation Weighted averaging 

Exp1 ATMS no no no 

Exp2 AMSR2 no no no 

Exp3 N/A no yes no 

Exp4 ATMS no yes no 

Exp5 AMSR2 no yes no 

Exp6 ATMS yes yes no 

Exp7 AMSR2 yes yes no 

Exp8 ATMS and AMSR2 no yes yes 

Exp9 ATMS and AMSR2 yes yes yes 
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296 
297 Figure 3. The algorithm framework for blending satellite retrievals with in situ observations. 

298 3.1. Bias correction: CDF matching 

299 In existing literature, bias in satellite SD/SWE products can be corrected through optimal 

300 interpolation, whereby the satellite estimate is the background (or the first guess) and subsequently 

301 blended with in situ data increments from surrounding stations (Kongoli et al., 2019; Liu et al., 

302 2015). However, the robustness of optimal interpolation as a bias correction mechanism is 

303 debatable. A separate bias correction is often done prior to multisensory blending in precipitation 
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analysis (Seo et al., 2000; Seo and Breidenbach, 2002; Xie and Xiong, 2011) and soil moisture 

analysis (Liu et al., 2011). In order to assess the potential impact of bias correction applied to 

satellite SWE prior to blending, we introduce a bias correction method based on cumulative 

distribution function (CDF) matching (Xie and Xiong, 2011). To this end, collocated pairs of in 

situ and satellite data are collected over a spatial domain of 120 km radius and a vertical distance 

of 800 m centered at the target grid cell and over a time period of 30 days, ending at the target date. 

The CDFs are then calculated for the satellite and in situ data, respectively. The initial data 

collection domain of 120 km radius is expanded when necessary until no less than 600 pairs of 

data (20 stations × 30 days) are collected to ensure stable CDFs. Under the assumption that the 

SWE at a percentage point in the CDF table for the satellite retrievals should be the same as that 

for the in situ observations, the bias of satellite retrievals at specific percentage point 𝑝 for the 

target grid cell 𝑘 can be corrected by 

𝑆 ,  𝑆 ,   𝑂 ,  𝑆 ,  (8) 

where 𝑆 ,  and 𝑆 ,  are the corrected and raw satellite retrievals, respectively; 𝑂 ,  and 𝑆 ,  are 

the SWE values at the percentage point 𝑝 in the CDF table for in situ observations and satellite 

retrievals, respectively. 

3.2. Optimal interpolation 

Optimal interpolation, or OI (Gandin, 1965) was reported to provide the most accurate and 

stable analyses among several popular objective analysis methods (Chen et al., 2008). In our 

algorithm, bias-corrected satellite retrievals are merged with in situ observations using the optimal 
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interpolation algorithm as in Brasnett (1999). The final analysis 𝑆  at a target grid cell 𝑘 is 

obtained by adjusting the background 𝑆  using observations and backgrounds at the surrounding 

stations: 

𝑆  𝑆 ∑  𝑤 𝑂 𝑆  (9) 

where 𝑂  is the observation at station 𝑖; 𝑆  is the background at the grid cell where station 𝑖 is 

located; 𝑛 is the number of stations used for interpolation; and 𝑤  is the optimum weight 

associated with station 𝑖 for calculating the adjustment to the grid cell 𝑘. The weight vector w is 

calculated as follows:  

𝐰  P  O q (10) 

where P is the correlation coefficient matrix of background errors between all pairs of surrounding 

stations; O is the covariance matrix of observational errors normalized by the background error 

variance between all pairs of surrounding stations; and q is the correlation coefficient vector of 

background errors between the surrounding stations and the target grid cell. 

The correlation coefficients of P and q are assumed to have the form  

𝜇  𝛼 ∆𝑟 𝛽 ∆𝑧  (11) 

with the horizontal and vertical correlation functions calculated following Eq. (5) and (6), 

respectively  

𝛼 ∆𝑟   1 𝑐∆𝑟 exp 𝑐∆𝑟  (12) 

𝛽 ∆𝑧   exp ∆𝑧 ⁄ℎ  (13) 
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where ∆𝑟  and ∆𝑧  denote the horizontal and vertical separations between points 𝑖 and 𝑗 , 

respectively, with 𝑖  1, 2, … , 𝑛 and 𝑗  1, 2, … , 𝑛 for calculating the correlation coefficients in P, 

and 𝑖  1, 2, … , 𝑛 and 𝑗  𝑘  for calculating the correlation coefficients in q ; 𝑐 and ℎ are two 

constants that prescribe the horizontal and vertical length scales, respectively. Here, we set 𝑐 to 

0.018 km-1 (corresponding to an e-folding distance of 120 km) and ℎ to 800 m following Brasnett 

(1999). 

To address the influence of terrain aspect (measured clockwise in degrees from north) on the 

snowpack, we derived the 0.125° terrain aspect map from the aggregated GMTED2010 elevation 

data and categorized the grid cells into north-facing (aspect ≤ 90° or aspect ≥270°) and south-

facing (90° < aspect < 270°) slopes following Liu et al. (2015). Surrounding stations sharing the 

same slopes with the target grid cell are incorporated in optimal interpolation. This constraint 

condition of terrain aspect is applied only to grid cells that have an elevation higher than 900 m as 

identified in latter analysis that ATMS and AMSR2 have poor performance in these areas. 

3.3. Weighted averaging 

To further leverage the spatially varying skills of satellite-based merged products, the in situ-

satellite merged SWE based on ATMS and AMSR2 retrievals are combined by weighted averaging 

𝑆̅  ∑  𝑤 , 𝑆 ,  (14) 

where 𝑆 ,  denotes the in situ-satellite merged SWE at the 𝑘th grid using the 𝑖th satellite product; 

𝑤 ,  is the optimal weight which can be determined by the reciprocal of mean squared error as  

𝑤 ,    ∑   (15)
,  ,  
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where 𝜎  
,  is the mean squared error calculated based on the collocated pairs of in situ and satellite 

data over a spatial domain of 120 km radius and a vertical distance of 800 m centered at the target 

grid cell 𝑘 and over a time period of 30 days, ending at the target date. 

4. Results and discussion 

In this section we first present the outcomes from the comparison of ATMS and AMSR2 SWE 

retrievals, then we describe the results of cross-validation experiments with a focus on the 

differential skills of products generated through each scheme. In the end we further compare the 

best product as determined from the cross-validation experiments with SNODAS analysis. 

4.1. Evaluation of the PMW SWE retrievals 

The relative accuracy and error sources of ATMS and AMSR2 SWE retrievals are examined 

in the following respects: a) geographic variations and associated seasonal contrasts; b) temporal 

dynamics of snowpack; c) influences of terrain, vegetation and SD; and d) potential sources of 

error. Results for each aspect are presented below. 

4.1.1. Geographic and seasonal variation 

Figure 4 shows the geographic distribution of multi-year (i.e., water years 2017–2019) mean 

daily SWE in different months for ATMS, AMSR2 and SNODAS. SWE retrievals from ATMS and 

AMSR2 agree well in the large-scale spatial patterns, but both largely underestimate SWE, as 

compared to SNODAS, in the north-central and northeastern US as well as in the Intermountain 

West. This is consistent with the findings of several other studies in which PMW retrievals were 

found lower than SNODAS analysis in the presence of complex terrain, high forest cover, deep 
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snowpack, and snow ablation (Tedesco and Narvekar, 2010; Vuyovich et al., 2014). The maximum 

daily SWE for different months ranges from 72 to 221 mm for ATMS and from 208 to 279 mm for 

AMSR2, which are much lower than the range exhibited by SNODAS product (1539–2919 mm). 

This suggests that ATMS saturates around 220 mm SWE and AMSR2 saturates around 280 mm 

SWE, most likely because the Tb at one of the primary retrieval channels (31.4 GHz for ATMS 

and 36.5 GHz for AMSR2) is no longer sensitive to increasing SWE (Hancock et al., 2013). 

Although the maximum daily SWE of ATMS is lower than that of AMSR2 for all months, the 

mean daily SWE of ATMS is generally higher than that of AMSR2 over almost all regions in all 

months. The exceptions are regions of the Northern Plains in February and over the western Souris-

Red-Rainy region in March. ATMS and AMSR2 capture the relatively high SWE from January to 

March over the Souris-Red-Rainy region, the Northern Plains, and the Rockies. Both PMW SWE 

products have better performance over the Northern Plains because this region is relatively flat and 

consists of mostly open prairie or farmland, where the snowpack has limited melt-refreeze effects 

(Josberger and Mognard, 2002). On the other hand, both products fail to track the shallow snow in 

November–December over the New England region, the Great Lakes region, the Rockies, the 

Cascade, and the Sierra Nevada, due to the weak scattering of shallow snow, which is difficult to 

be detected by PMW sensors (Foster et al., 2011). Meanwhile, they also fail to track the wet snow 

in March–June over these regions because meltwater in the snowpack significantly reduces the 

scattering signal compared with dry snow, resulting in a decrease of the high- and low-frequency 

Tb difference (Dawson et al., 2018; Foster et al., 2005). 
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403 

404 Figure 4. Geographic distribution of multi-year (i.e., water years 2017–2019) mean daily SWE in 
405 different months. Text at the top of each subfigure shows the maximum daily SWE in that month. 
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We also evaluated the ATMS, AMSR2, and SNODAS against the IMS snow cover analysis 

for the water years 2017–2019 to check their reliability in detecting snow cover. Grid cells were 

classified as snow or non-snow covered based on a SWE threshold of 1 mm as in Brown et al. 

(2007). Figure 5 shows the false alarm ratio (FAR) versus probability of detection (POD) in 

different months over ten snow covered HUs. Overall, both PMW products underperform 

SNODAS analysis in snow detection, which demonstrates the need for an accurate snow mask 

(such as the IMS snow cover analysis) before blending PMW products with the in situ observations. 

One caveat is that the high POD in SNODAS could be due to overestimation in some cases, as 

indicated by the high FAR for November and April–June as well as over parts of the Intermountain 

West (HUs 16–18) and the Great Lakes region (HU 4). The PMW products have clear issues in 

observing snow cover in April–June due to snow ablation (particularly increasing water content 

due to melting) and for almost all months over the complex terrain in the Sierra Nevada (HU 18). 

ATMS and AMSR2 clearly exhibit complementary snow cover detecting skills. In general, 

AMSR2 shows better detection skills over the New England region (HU 1) and the Great Lakes 

region (HU 4), but for some of the regions, including the Upper Mississippi (HU 7), the Souris-

Red-Rainy (HU 9), the Missouri (HU 10), and the Pacific Northwest (HU 17), ATMS exhibits 

slightly higher detection skills. On the other hand, higher incidence of false alarms is seen in ATMS 

product for most of the study regions, and is particularly pronounced for April–May and over the 

east of the Rockies (HUs 1, 2, 4, 7, 9, and 10). These differences can be explained by the fact that 

ATMS SWE retrieval has on the average a lower resolution than the AMSR2 counterpart. As 
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426 indicated earlier, the resolution of ATMS is lower than AMSR2 and it tends to decline at wider 

427 scanning angle. As the size of the grid pixel increases, it is more likely to encompass areas that are 

428 snow-free. This effect tends to be more pronounced in regions with ephemeral and patchy snow 

429 cover, and this is why the FAR for ATMS is particularly high in April and over the east of Rockies. 

430 
431 Figure 5. False alarm ratio (FAR) versus probability of detection (POD) for the snow cover of 
432 ATMS (red), AMSR2 (blue), and SNODAS (green) against IMS analysis in different months over 
433 ten snow covered HUs from the western to the eastern US. FAR and POD are calculated based on 
434 the daily snow cover of the water years 2017–2019. Numbers in the circles show the months. The 
435 closer a circle is to the upper left corner, the better it estimates. 

436 4.1.2. Temporal dynamics 

437 Figure 6 compares the time series of multi-station mean daily SWE for ATMS, AMSR2, 

438 SNODAS, and in situ observations over ten snow covered HUs. SNODAS provides relatively 

439 accurate depiction of SWE temporal variation in all HUs, with a correlation between 0.93 and 0.98 

440 and a bias between −42 and −4 mm. At the same time, ATMS and AMSR2 perform poorly over 

441 the Mountainous West (HUs 10, 14 and 16–18); ATMS has a correlation ranging from 0.56 to 0.67 
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and a bias ranging from −153 to −36 mm and AMSR2 has a correlation ranging from 0.52 to 0.68 

and a bias ranging from −155 to −39 mm. The initial snow accumulation phase and the abrupt end 

of season snow melt from the PMW SWE appear to track closely the in situ observations over the 

Northeast (HUs 1 and 2) and the Upper Midwest (HUs 4, 7, and 9), where the correlation is 

between 0.78 and 0.90 and the bias is between −31 and −7 mm for ATMS and the correlation is 

between 0.71 and 0.88 and the bias is between −36 and −8 mm for AMSR2. The PMW SWE peak 

slightly earlier than the in situ data, potentially a result of sensor saturation and liquid water effect, 

which reduces the scattering signal of the snowpack and thus limits the retrieval of SWE. Overall, 

ATMS outperforms AMSR2 for HUs 2, 4, 7, 9, and 16–18, whereas AMSR2 SWE is more closely 

correlated with in situ data yet it exhibits generally larger absolute bias than ATMS in HUs 10 and 

14. These observations point to broad complementarity between ATMS and AMSR2 SWE 

products.  
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454 

455 Figure 6. Time series of multi-station mean daily SWE for the main snow seasons of the water 
456 years 2017–2019 (different water years are separated by gray dashed lines) in ten snow covered 
457 HUs. SNODAS, AMSR2, ATMS, and in situ data are denoted by green, blue, red, and black colors, 
458 respectively. CC represents correlation and BIAS represents bias. 

459 A distinctive feature in Figure 6 is that ATMS SWE is conspicuously higher than AMSR2 

460 SWE in late December and early January in HUs 2, 4, 7, 9, and 10, especially for the water years 

461 2017 and 2018 in HU 10. As the two retrievals rely on different assumptions of snow density, we 

462 performed a simple analysis to assess the specific role of the differing snow density in this early 

463 winter contrast. We applied a constant snow density of 0.25 g/cm3 (as in ATMS) to the AMSR2 
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SD to derive an alternative AMSR2 SWE product. In addition, AMSR2 assigns a nominal SD of 

5 cm to shallow snow, which is quite different from the ATMS retrieval algorithm. We categorized 

stations into two types as SD < 100 mm and SD ≥ 100 mm to contrast the early winter SWE 

difference. Figure 7 shows the multi-station mean daily SWE of AMSR2 with revised snow density 

against those of raw AMSR2 and ATMS products for HU 10. It is clear that the snow density 

assumption has marginal impact on the AMSR2 SWE series (i.e., slight difference in CC and BIAS 

for the two AMSR2 products), and thus it is unlikely to be the key cause of the difference between 

ATMS and AMSR2 SWE retrievals. The only time when this difference is relatively large is in the 

early winter and where snow is shallow (i.e., SD < 100 mm stations). It therefore appears that 

AMSR2’s rather pronounced underestimation of SWE in late December and early January is more 

likely an outcome of inappropriate treatment of shallow snow in its algorithm. More specifically, 

AMSR2 uses the 89 GHz channel for detecting “shallow snow” as a separate class, to which a 

minimal SD value is assigned (Kelly, 2009). However, the 89 GHz channel is more sensitive to 

interference by atmospheric water vapor and precipitation, has lower snowpack penetration depth 

and is noisier due to snowpack grain size variations than the lower frequency channels. During the 

early phase of snow accumulation, this shallow snow switch is more likely to be activated, 

resulting in large negative bias. 
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481 
482 Figure 7. Time series of multi-station mean daily SWE for the main snow seasons of the water 
483 years 2017–2019 (different water years are separated by gray dashed lines) in HU 10. AMSR2 
484 with constant snow density, AMSR2, ATMS, and in situ data are denoted by green, blue, red, and 
485 black colors, respectively. CC represents correlation and BIAS represents bias. 

486 4.1.3. Effects of terrain, vegetation, and SD 

487 The uncertainties in PMW SWE retrievals are attributable to many factors such as terrain, 

488 vegetation, and sensor saturation (Foster et al., 2005; Hancock et al., 2013), as well as snowpack 

489 properties such as snow grain size and volume fraction. We therefore compute a new set of 

490 validation statistics for ATMS, AMSR2 and SNODAS SWE products stratified by station elevation, 

491 grid elevation range, mean green vegetation fraction (GVF), and mean SD to determine the impact 

492 of each factor on SWE (Figure 8). The elevation and SD data were collected from the observation 
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stations. The elevation range within each of the 0.125° grid cell was determined using the 30 arc 

second GMTED2010 elevation data. The GVF data were derived from the MODIS global Leaf 

Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) product 

(MOD15A2; Myneni et al., 2015) using Weather Research and Forecasting Preprocessing System 

(WPS). 

As expected, SNODAS performs much better than ATMS and AMSR2 in both correlation 

and bias because it assimilates SNOTEL and COOP data. ATMS generally has lower correlation 

but smaller absolute bias than AMSR2, which demonstrates the complementary nature of, and thus 

the utility in blending both products. The performance of ATMS and AMSR2 declines with 

elevation, elevation range, GVF, and SD. Considering both correlation and bias, it is evident that 

PMW SWE is more reliable when elevation is below 900 m, elevation range is smaller than 300 

m, GVF is less than 20%, and SD is lower than 200 mm. Snow properties exhibit wide spatial 

variations in high elevation areas as elevation ≥ 900 m due to complex terrain, which is difficult 

to be captured by the coarse spatial resolution of the available PMW sensors (Mätzler and Standley, 

2000). The difference between PMW and in situ SWE widens with the elevation range as the 

surface heterogeneity becomes more significant (Cho et al., 2020). The masking effect of the forest 

canopy overwhelms the scattering signal from the snowpack when GVF ≥ 20%, which can lead to 

SWE underestimation (Foster et al., 2005). Additionally, there is a clear trend that the 

underestimation of SWE becomes increasingly severe at higher SD, especially when SD ≥ 200 

mm; and this is reflecting the signal saturation in deep snow (Clifford, 2010). 
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513 
514 Figure 8. Box plots for correlation and bias of the daily SWE (November–June for the water years 
515 2017–2019) stratified by station elevation, grid elevation range, mean green vegetation fraction, 
516 and mean snow depth. ATMS, AMSR2, and SNODAS are represented by red, blue, and green 
517 boxes, respectively. The number above the box is the total valid number of the statistic for each 
518 class.  

519 4.1.4. Potential sources of error 

520 The similarities and differences in the performance of ATMS and AMSR2 SWE retrievals are 

521 closely linked to those in instruments as well as in the retrieval algorithms. PMW SD retrieval 
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algorithms rely on the microwave scattering signal produced by snow grains, which is manifested 

in a decrease of emitted radiation at higher frequencies relative to lower frequencies (Kelly, 2009). 

This decrease is a complex function of snowpack characteristics such as SD, grain size and 

snowpack density, the latter two of which can also vary within the snow column. AMSR2 retrieval 

algorithm, being an empirical mechanism, relates variation in Tb to SD but it does not account for 

grain size or snowpack density explicitly. At higher SD, Tb difference among channels becomes 

insensitive to changes in SD and this gives rise to signal saturation. Though ATMS retrieval 

algorithm employs a different approach (i.e., assimilation of radiance into the CRTM to retrieve 

surface emissivity spectra which in turn are interpreted through a simple snow emission model to 

retrieve SWE), its SWE retrieval remains subject to signal saturation that arises from reduced 

sensitivity of radiance to SD variations for deeper snowpack. In general, the relatively lower 

correlation, lower detection rate, and higher false alarm rate for ATMS SWE are indication that its 

retrieval mechanism, though physically based, is prone to errors arising from model 

parameterizations and underrepresentation of processes. Possible sources of error include 

misclassification of surface type for the a priori background spectrum in the snow emissivity, 

errors in atmospheric temperature and moisture profiles (Boukabara et al., 2013), and errors in the 

structure of the snow emissivity model and CRTM. The assumption of constant snow density most 

likely degrades the performance of ATMS SWE retrieval, as it ignores the variation as a result of 

compaction and snow metamorphism (Dawson et al., 2017). However, this impact appears limited 
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as only small difference in statistics is observed in the AMSR2 SWE when a constant density is 

imposed.  

The information gained can assist algorithm developers in anticipating error characteristics 

of other SWE products, e.g., the MiRS-based Advanced Microwave Sounding Unit‐A 

(AMSUA)/Microwave Humidity Sounder (MHS) onboard the Meteorological Operational 

Satellite (Metop)-A, B, and C (Klaes et al., 2007), as well as help users establish the circumstances 

where each product, or a combination of the products can be effectively applied. The relative skills 

and error characteristics serve as the basis for the blending algorithm. 

4.2. Cross-validation of different blended SWE products 

We performed 𝑘 -fold cross-validation to assess the performance of the blended in situ-

satellite SWE. Such cross-validation is commonly used for validating model and observational 

analysis (Fushiki, 2011; Gan et al., 2015). Specifically, the in situ SWE observations from about 

𝑘  1 /𝑘 of the 5862 stations (789 SNOTEL and 5073 COOP stations) were used in the blending 

process whereas the remainder 1/𝑘 were withheld for validation. This blending process was 

repeated 𝑘 times so that the observation at each station was withdrawn once. The blended SWE 

analyses and corresponding statistics at the withdrawn stations were then calculated. 

4.2.1. Comparison of different blending schemes 

We first performed 10-fold cross-validation, which uses observations from 90% of stations in 

the blending process, to assess the performances of different blending schemes. The box-percentile 

plots for correlation, bias, root mean square error (RMSE), and unbiased RMSE of the different 
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experiments in Table 1 and the SNODAS product are shown in Figure 9. Overall, all blended 

experiments (Exp3–Exp9) show much better performance than the raw ATMS (Exp1) and AMSR2 

(Exp2). However, the optimal interpolation with the in situ observations alone experiment (Exp3) 

still exhibits large negative biases and performs much worse than the optimal interpolation with 

background experiments (Exp4 and Exp5). This confirms the utility of the satellite retrievals as 

background, despite their deficiencies relative to in situ observations. Exp4 and Exp5 improve the 

mean correlation from 0.72 (Exp1) to 0.82 (Exp4) for ATMS and from 0.72 (Exp2) to 0.83 (Exp5) 

for AMSR2; meanwhile, the mean bias is improved from −41 mm (Exp1) to −14 mm (Exp4) for 

ATMS and from −43 mm (Exp2) to −14 mm (Exp5) for AMSR2. Compared to the ATMS and 

AMSR2 SWE, the experiments with both bias correction and optimal interpolation (Exp6 and 

Exp7) show improved mean correlation, i.e., from 0.72 (Exp1) to 0.79 (Exp6) for ATMS and from 

0.72 (Exp2) to 0.79 (Exp7) for AMSR2; meanwhile, the mean bias is improved from −41 mm 

(Exp1) to −10 mm (Exp6) for ATMS and from −43 mm (Exp2) to −10 mm (Exp7) for AMSR2. It 

is noted that the absolute bias would be reduced even more but the correlation would be improved 

relatively less when bias correction was applied before optimal interpolation. The weighted 

average of Exp4 and Exp5, i.e. Exp8, has higher correlation (with a mean value of 0.85) and 

smaller absolute bias (with a mean value of −12 mm) than both Exp4 and Exp5; while Exp9, which 

is the weighted average of Exp6 and Exp7, has much higher correlation (with a mean value of 0.84) 

but slightly larger absolute bias (with a mean value of −12 mm) than both Exp6 and Exp7. 

Compared to the ATMS and AMSR2 SWE, Exp8 increases the mean correlation by 18% and 17%, 
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581 respectively, and reduces the mean bias by 70% and 71%, respectively; while Exp9 increases the 

582 mean correlation by 17% and 16%, respectively, and reduces the mean bias by 70% and 71%, 

583 respectively. Over 75% stations have a correlation higher than 0.80 and over 65% stations have an 

584 absolute bias smaller than 10 mm for Exp8 and Exp9, which are better than all the other 

585 experiments and are comparable to SNODAS SWE product. 

586 

587 Figure 9. Box-percentile plots for (a) correlation, (b) bias, (c) RMSE, and (d) unbiased RMSE of 
588 the different experiments in Table 1 and the SNODAS product. Exp1 and Exp2 are experiments 
589 for the raw ATMS and AMSR2 SWE, respectively. Exp3 to Exp9 are different blending 
590 experiments with 10-fold cross-validation scheme. In each box, the black dot represents the mean 
591 value and the white lines from top to bottom represent 75%, 50%, and 25% percentiles, 
592 respectively. The width of the box shows the distribution of the data. 
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4.2.2. Impact of bias correction 

We also repeated the comparisons for products Exp8 and Exp9 using 2- and 4-fold cross-

validation schemes. Figure 10 shows the box-percentile plots for correlation, bias, RMSE, and 

unbiased RMSE of Exp8 and Exp9 as derived from 2-, 4-, and 10-fold cross-validations. As 

expected, the cross-validation schemes with more station records tend to perform better. While 

Exp8 and Exp9 perform similarly in the 10-fold cross-validation, all statistics except the bias of 

Exp8 are better than those of Exp9 in the 2- and 4-fold cross-validations. This means that the 

blending scheme with a prior bias correction (Exp9) does not always improve overall performance 

– other than bias – compared to that without bias correction (Exp8). Histogram matching intended 

to reduce the large negative bias of PMW SWE can degrade correlation to a certain extent, and the 

degradation can be alleviated when more stations are included in the blending process. 
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604 

605 Figure 10. Box-percentile plots for (a) correlation, (b) bias, (c) RMSE, and (d) unbiased RMSE 
606 of Exp8 and Exp9 with different cross-validation schemes. In each box, the black dot represents 
607 the mean value and the white lines from top to bottom represent 75%, 50%, and 25% percentiles, 
608 respectively. The width of the box shows the distribution of the data. 

609 In order to closely examine the role of bias correction, we compared the time series of Exp8 

610 and Exp9 with 10-fold cross-validation scheme against in situ and SNODAS SWE on a multi-

611 station mean basis for selected HUs in Figure 11. Exp8 and Exp9 outperform SNODAS in HUs 1, 

612 4, 7, and 9, with correlation ranging from 0.98 to 0.99 and bias ranging from −15 to −2 mm. 

613 Meanwhile, Exp9 also outperforms SNODAS in HU 10, with a correlation of 0.99 and a bias of 

614 −7 mm. Nonetheless, Exp8 and Exp9 show relatively larger underestimation than SNODAS in 

615 HUs 14 and 16–18, with correlation ranging from 0.93 to 0.99 and bias ranging from −72 to −25 
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mm. Overall, the agreement between the blended products and the in situ observations is fairly 

well except Exp8 shows some spurious spikes in HUs 10, 14 and 16–18. This suggests that 

although optimal interpolation can generate realistic estimates of SWE at validation points, it may 

introduce spikes when the bias between the backgrounds and observations is large. These 

observations indicate that an independent bias correction method is warranted, at least for the 

Intermountain West where the in situ network is sparse and the spatial representativeness of in situ 

observations is limited by topography (Broxton et al., 2016a). Nevertheless, it is worth pointing 

out that bias correction does not always render the product bias free, or even improve the bias. For 

example, Exp9 exhibits slightly worse negative bias than Exp8 for HU9, and again this can be 

explained by a combination of a relatively sparse in situ network and severe bias that make the 

bias correction less effective. 
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627 

628 Figure 11. Time series of multi-station mean daily SWE for the main snow seasons of the water 
629 years 2017–2019 (different water years are separated by gray dashed lines) in ten snow covered 
630 HUs. Exp8 (red color) and Exp9 (blue color) are blending experiments as shown in Table 1 with 
631 10-fold cross-validation. SNODAS and in situ data are denoted by green color and black color, 
632 respectively. CC represents correlation and BIAS represents bias. 

633 4.3. Evaluation of the final blended SWE product 

634 The earlier analysis suggests that Exp9, the blended product that underwent bias correction, 

635 broadly outperforms others. In this section we further explore the difference between this dataset 

636 and SNODAS SWE analysis to illustrate its potential practical utility over different geographic 
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settings. Figure 12 shows the geographic distribution of the multi-year (i.e., water years 2017– 

2019) mean daily SWE for Exp9, SNODAS, and their differences across snow season. Generally, 

the final blended product (Exp9) agrees well with the SNODAS analysis in spatial pattern. The 

overestimation over the Rockies, the Northern Plains, and the Souris-Red-Rainy region from 

January to March is reasonable since SNODAS was demonstrated to underestimate the actual SWE 

in these regions as shown in Figure 11. SNODAS tends to underestimate snow density and thus 

SWE, because it assimilates SD and SWE observations across different scales and platforms 

without using snow density to constrain the assimilation (Dawson et al., 2017). Previous studies 

also found that SNODAS slightly underestimates SD in heavily forested regions (Anderson, 2011) 

and considerably underestimates SD in mountainous regions (Clow et al., 2012). On the other hand, 

the final blended product underestimates SWE over the Cascade and Sierra Nevada from 

December to June as well as the northern New England and northern Great Lakes regions from 

December to April. This discrepancy could be partly attributed to the fact that SNODAS tends to 

overestimate in these regions in April–June as indicated by the high FAR in Figure 5. It could also 

be attributed to the sparsity of observation stations in these regions (see Figure 1) to correct the 

large negative bias of the backgrounds (ATMS and AMSR2 SWE). Furthermore, the 

representativeness of the stations for their surrounding areas might be inadequate due to the spatial 

heterogeneity (Meromy et al., 2013), which also limits the accuracy of the blended in situ-satellite 

product. Interested readers can find additional information on the differential improvements of 

blended products for different land surface characteristics in the supplementary material.  
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657 

658 Figure 12. Geographic distribution of multi-year (i.e., water years 2017–2019) mean daily SWE 
659 in different months.  
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5. Summary and conclusions 

This paper compares two different PMW SWE products, namely ATMS and AMSR2, with 

SNOTEL and COOP in situ observations and the SNODAS analysis over the CONUS. A blending 

algorithm is then designed to optimally combine the in situ and satellite SWE to obtain a reliable 

gridded product at a relatively high spatial resolution (0.125° × 0.125°). 

The comparison results indicate that the accuracy of ATMS and AMSR2 SWE, despite 

derived using different instruments and retrieval algorithms, have much in common in terms of 

geographic distribution of performance. Both products capture the temporal variability of in situ 

SWE well when elevation is below 900 m, elevation range is smaller than 300 m, GVF is less than 

20%, and SD is lower than 200 mm. On the other hand, both products considerably underestimate 

SWE in the north-central and northeastern US as well as in the Intermountain West, possibly due 

to a combination of the influence of complex terrain, high forest cover, deep snowpack, and snow 

ablation. These similarities notwithstanding, there are notable differences in the performance of 

the two retrievals that point substantially to their complementarity as sources of information for 

SWE estimates. Relative to AMSR2, the signal saturation for ATMS appears to occur at a lower 

SWE (220 mm SWE vs 280mm SWE for AMSR2), and the ATMS tends to over-detect snow 

covered areas due to its larger field of views. On the other hand, ATMS does fare better in detecting 

snow cover over the early and middle of snow season (December to February) for regions spanning 

from the Pacific Northwest to the Upper Midwest (except for the Souris-Red-Rainy region), 

though it exhibits broadly higher false alarm rates for a majority of these regions. Further analysis 
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also reveals a potential defect of AMSR2 retrieval – it tends to severely underestimate the SWE 

for early snow season over the Northern Plains, and this is related to its use of high frequency 

channel (i.e., 89 GHz) whose radiance observations tend to saturate at shallower SD. 

Our blending algorithm provides a simple, yet effective way to produce reliable blended in 

situ-satellite SWE estimates by exploiting the complementary strengths of AMSR2 and ATMS 

SWE retrievals. The final, blended product outperforms the interpolated station-only product as 

well as the raw ATMS and AMSR2 SWE: for the latter, the mean correlation sees 17% and 16% 

increases, while the mean bias drops by 70% and 71%, respectively. In particular, our analysis 

shows that an independent bias correction is effective in improving upon the optimal interpolation-

based blended product for much of the snow season. The only exception is over the Intermountain 

West, where the sparsity of in situ stations and their preferred topographic locations constrain the 

efficacy of the bias correction. Nonetheless, even in these regions, bias correction is still helpful 

as it reduces the wild fluctuations in SWE that itself is likely a consequence of data paucity. 

Additional research is warranted to identify the station density threshold and potential temporal 

smoothing approaches for damping out the oscillations.  

The blended SWE can be used in a number of practical contexts, which include, but are not 

limited to assisting with situational hydrologic awareness for forecasters and water managers and 

serving as observation field assimilated to snow and land surface models. As demonstrated in the 

study, the blended product in fact slightly outperforms the SNODAS analysis in some of the 

regions over Northeast to the Upper Midwest where snowpack was shallow and ephemeral, though 
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SNODAS analysis remains a superior dataset over the Intermountain West where snowpack is 

much thicker than what satellites can sense. This suggests that there is additional room for 

improving the snow analysis by leveraging the strengths of blended products and model simulation 

through data assimilation. In addition, observations from emerging platforms, e.g., airborne lidar 

(Painter et al., 2016), GPS-reflectometry (Larson, 2016), Sentinel-1 C-band synthetic aperture 

radar (Lievens et al., 2019), and airborne gamma radiation detector (Cho et al., 2020) offer new 

opportunities to address the sparsity of in situ data over mountainous regions and adoption of these 

datasets in the blending framework will be explored in future studies.  
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1052 List of Figure Captions 

1053 Figure 1. Elevation and spatial distribution of SNOTEL and COOP stations in the 18 hydrologic 
1054 units over the CONUS. 

Figure 2. Flowchart of the ATMS SWE retrieval algorithm. 

1056 Figure 3. The algorithm framework for blending satellite retrievals with in situ observations. 

1057 Figure 4. Geographic distribution of multi-year (i.e., water years 2017–2019) mean daily SWE in 
1058 different months. Text at the top of each subfigure shows the maximum daily SWE in that month. 

1059 Figure 5. False alarm ratio (FAR) versus probability of detection (POD) for the snow cover of 
ATMS (red), AMSR2 (blue), and SNODAS (green) against IMS analysis in different months over 

1061 ten snow covered HUs from the western to the eastern US. FAR and POD are calculated based on 
1062 the daily snow cover of the water years 2017–2019. Numbers in the circles show the months. The 
1063 closer a circle is to the upper left corner, the better it estimates. 

1064 Figure 6. Time series of multi-station mean daily SWE for the main snow seasons of the water 
years 2017–2019 (different water years are separated by gray dashed lines) in ten snow covered 

1066 HUs. SNODAS, AMSR2, ATMS, and in situ data are denoted by green, blue, red, and black colors, 
1067 respectively. CC represents correlation and BIAS represents bias. 

1068 Figure 7. Time series of multi-station mean daily SWE for the main snow seasons of the water 
1069 years 2017–2019 (different water years are separated by gray dashed lines) in HU 10. AMSR2 

with constant snow density, AMSR2, ATMS, and in situ data are denoted by green, blue, red, and 
1071 black colors, respectively. CC represents correlation and BIAS represents bias. 

1072 Figure 8. Box plots for correlation and bias of the daily SWE (November–June for the water years 
1073 2017–2019) stratified by station elevation, grid elevation range, mean green vegetation fraction, 
1074 and mean snow depth. ATMS, AMSR2, and SNODAS are represented by red, blue, and green 

boxes, respectively. The number above the box is the total valid number of the statistic for each 
1076 class. 

1077 Figure 9. Box-percentile plots for (a) correlation, (b) bias, (c) RMSE, and (d) unbiased RMSE of 
1078 the different experiments in Table 1 and the SNODAS product. Exp1 and Exp2 are experiments 
1079 for the raw ATMS and AMSR2 SWE, respectively. Exp3 to Exp9 are different blending 

experiments with 10-fold cross-validation scheme. In each box, the black dot represents the mean 
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1081 value and the white lines from top to bottom represent 75%, 50%, and 25% percentiles, 
1082 respectively. The width of the box shows the distribution of the data. 

1083 Figure 10. Box-percentile plots for (a) correlation, (b) bias, (c) RMSE, and (d) unbiased RMSE 
1084 of Exp8 and Exp9 with different cross-validation schemes. In each box, the black dot represents 
1085 the mean value and the white lines from top to bottom represent 75%, 50%, and 25% percentiles, 
1086 respectively. The width of the box shows the distribution of the data. 

1087 Figure 11. Time series of multi-station mean daily SWE for the main snow seasons of the water 
1088 years 2017–2019 (different water years are separated by gray dashed lines) in ten snow covered 
1089 HUs. Exp8 (red color) and Exp9 (blue color) are blending experiments as shown in Table 1 with 
1090 10-fold cross-validation. SNODAS and in situ data are denoted by green color and black color, 
1091 respectively. CC represents correlation and BIAS represents bias. 

1092 Figure 12. Geographic distribution of multi-year (i.e., water years 2017–2019) mean daily SWE 
1093 in different months. 
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